

2.6.1 Modellieren und Codieren von Algorithmen

Arbeitsblatt 09 Rekursion Lösungen

www.fit-for-it-3.de Seite 1 verlag ludwig schulbuch

Rekursion

 Als Rekursion bezeichnet man eine Programmiertechnik, in der eine Methode sich selbst aufruft.
Jeder Aufruf der rekursiven Methode muss sich in endlich vielen Schritten auflösen lassen, sie darf
nicht in eine Endlosschleife geraten.

1. Rekursive Programmierung kann also nur mit Hilfe einer Methode durchgeführt werden.

o Ergänze in der Version 7 oder 8 des EOS-Programms
seifenkiste die beiden im Klassendiagramm gegebenen
Methoden.

o Ändere den Programmcode in der Methode fahre() nach
dem Aktivitätsdiagramm ab und speichere das geänderte
Programm als seifenkiste-rekursiv.eos.
(Vorlagedatei: v09-seifenkiste8.eos)
vgl. .\261-materialien\seifenkiste\09-seifenkiste-rekursiv.eos

2. Auch das Programm ballon1.eos (vgl. Arbeitsblatt 1.8-04, S. 2) kann rekursiv programmiert werden.
Zur Erinnerung: Ein blauer „Ballon“ mit dem Radius 14
wurde auf einen Radius von 300 „aufgepustet“.

o Modelliere den „Ballon“ in dem Klassendiagramm rechts.
Ergänze eine geeignete Methode.

o Stelle den Algorithmus für die neue Methode in einem
Aktivitätsdiagramm dar.

o Ändere den Programmcode ab (ballon3.eos).
vgl. .\261-materialien\ballon\03-ballon3.eos

Aktivitätsdiagramm fahre

nein

ja

kiste.rechts < wand.links?

verschiebe Seifenkiste um 1 nach rechts

fahre

SeifenkisteMitWand

xwand:Integer
seifenkiste1:Gruppe

kiste1:Rechteck

rad01:Kreis

rad02:Kreis
wand1:Rechteck

zeichneKiste()
fahre()

Ballon

ballon1:Kreis

warte()

puste()

Aktivitätsdiagramm puste

nein

ja

ballon1.radius < 300?

erhöhe den Radius von Ballon1 um eins

puste

2.6.1 Modellieren und Codieren von Algorithmen

Arbeitsblatt 09 Rekursion Lösungen

www.fit-for-it-3.de Seite 2 verlag ludwig schulbuch

3. Warum kann man bei einer immer weiter laufenden Uhr nicht von einer Rekursion sprechen?

Das Programm befindet sich in einer Endlosschleife. Es lässt sich also nicht in endlich

vielen Schritten auflösen.

4. Nenne eine gewollte Endlosschleife.

Zum Beispiel die Abfrage der Position des Mauszeigers.

5. Warum kann man bei dem Programm zu Aufgabe 1 von einer Rekursion sprechen?

Hier lässt sich jeder Aufruf der rekursiven Funktion in endlich vielen Schritten auflösen.

6. Wenn eine Uhr nicht immer weiterläuft, sondern auf Null zurückzählt, spricht man von einem Timer.
Ein Timer ist für rekursive Programmierung geeignet.
Dafür kann als Basis das Programm uhr1.eos verwendet werden.
Es soll so abgeändert werden, dass 3 Stunden zurückgezählt werden.
Zum Start ist also der Stundenzeiger auf „drei Uhr“ zu stellen.
Stoppen soll der Timer, wenn der Stundenzeiger auf Null steht.

Hinweis: Um die Stunden und Minuten mitzählen zu können,
werden die Variablen std und min eingeführt.
Rechts ist das Klassendiagramm des Timers gegeben.

o Ergänze das Aktivitätsdiagramm dazu.

methode zähle

 Minuten.drehenUm(0,0,6)

 min:=min-1

 warte()

 wenn min=0 dann

 Stunden.drehenUm(0,0,30)

 min:=60

 std:=std-1

 *wenn

 wenn std>0 dann

 zähle()

 *wenn

ende

o Codiere den Algorithmus in EOS und speichere die Datei als timer.eos.
(Vorlagedatei: v10-uhr1.eos); vgl. .\261-materialien\uhr\07-timer.eos

Timer

Zifferblatt1:Gruppe
Stunden:Gruppe

Minuten:Gruppe

Rand:Kreis

Ziffer:Linie
Zeiger1:Rechteck

Spitze:Dreieck

Achse:Kreis

std:Integer
min:Integer

erstelleUhr()

warte()

zähle()

Aktivitätsdiagramm zähle
nein

ja
std > 0?

drehe den Minutenzeiger um den Punkt
(0|0), 6 Grad gegen den Uhrzeigersinn

zähle

reduziere min um eins

warte kurz

reduziere std um eins

ja

nein
drehe den Stundenzeiger

setze min := 60

min = 0?

