
2.6.2 Objektorientierte Programmierung 
Arbeitsblatt 01 Einführung in Processing

www.fit-for-it-3.de Seite 1 verlag ludwig schulbuch

Einführung in Processing

Für die Programmierung in Processing steht eine integrierte Entwicklungsumgebung (IDE – engl. integrated 
development environment) zur Verfügung. Eine IDE ermöglicht das Erstellen von Computerprogrammen in 
einer Programmieroberfläche.

1. Gib in Processing die Anweisungen so ein, wie sie in der Abbildung unten dargestellt sind.
Lege die Verzeichnisstruktur an.

o Speichere das Programm unter der Bezeichnung siebzehnplusvier.

Processing legt für jedes Programm ein eigenes Verzeichnis an: 
In diesem Verzeichnis ist die Programmdatei sketch_01_siebzehnplusvier.pde. 
(pde steht für processing development environment). 
Die Bezeichnung 
sketch (engl. für 
„Skizze“) soll darauf 
hindeuten, dass man 
in Processing schnell 
Zeichnungen erzeugen 
kann. 
Das Programm wird 
in dem Texteditor 
eingegeben.

o Starte das Programm,
indem du auf die 
Schaltfläche 
klickst. 
In der Konsole kön- 
nen Textausgaben 
angezeigt werden. 
Für Grafikausgaben 
wird nach dem 
Programmstart 
ein Zeichenfenster 
geöffnet.

o Beende das Programm, indem du auf die Schaltfläche klickst. 

o Vergleiche die Ausgaben in der Konsole mit den Anweisungen des Programms. Beschreibe die 
Wirkung der Anweisungen in den einzelnen Programmzeilen.

print: __________________________________________________________________________ 

println: ________________________________________________________________________ 

1: ____________________________________________________________________________ 

2: ____________________________________________________________________________ 

3: ____________________________________________________________________________ 

4: ____________________________________________________________________________ 

5: ____________________________________________________________________________

Anweisungen müssen 
mit einem Strichpunkt 
abgeschlossen werden.



2.6.2 Objektorientierte Programmierung 
Arbeitsblatt 01 Einführung in Processing

www.fit-for-it-3.de Seite 2 verlag ludwig schulbuch

Variablen

2. Wie lautet die Anweisung für die Zeile 6? Ergänze und teste das Programm.
Speichere den Sektch als 02_siebzehnplusvier. 
(vgl. .\262-materialien\rechnung\sketch_02_siebzehnplusvier_variable)

3. Implementiere ein Programm, das zwei Zahlen multipliziert
und dann das Produkt durch eine andere Zahl dividiert. 
Die Terme sollen in der Konsole angezeigt werden. 
Achte darauf, dass der Quotient keine ganze Zahl ist. 
Hinweis: Das Zeichen für Multiplikation ist *, für Division /.

o Ergänze den Algorithmus in dem Aktivitätsdiagramm. 

o Codiere den Algorithmus in Processing und
speichere den Sketch als 03_rechnung.

o Sieh dir das Ergebnis genau an. Was stellst du fest?

____________________________________ 

____________________________________

o Kannst du dir einen Grund dafür vorstellen?

____________________________________ 

____________________________________ 

____________________________________ 

____________________________________ 

____________________________________ 

____________________________________ 

Das Problem kann man mit einer Funktion behoben werden. Das ist eine Art von Unterprogramm, das man 
in dem eigentlichen Programm aufrufen kann. Eine Programmiersprache verfügt über viele Funktionen. 
Ein Beispiel ist die Funktion float(), die ganzzahlige Werte in Kommazahlen umwandelt. 
Statt Quotient=Produkt/5; kann man kann z. B. schreiben Quotient=float(Produkt)/5;. 
Dadurch wird der Wert der Variablen Produkt vor der Division in eine Kommazahl umgewandelt.

4. Ergänze dein Programm (04_rechnung_funktion).

Fließkommavariable Quotient

ganzzahlige Variable Produkt

Aktivitätsdiagramm:



2.6.2 Objektorientierte Programmierung 
Arbeitsblatt 01 Einführung in Processing

www.fit-for-it-3.de Seite 3 verlag ludwig schulbuch

Funktionen

5. Gib in Processing das Programm so ein, wie es in den Lerninhalten S. 3 beschrieben ist.
Speichere das Programm unter der Bezeichnung 05_siebzehnplusvier_funktion. 

Hinweise:

6. In einer weiteren Funktion sollen zwei Zahlen multipliziert werden. 

o Ergänze die Aktivitätsdiagramme für die Funktionen addiere() und multipliziere().

o Codiere den Algorithmus (06_rechnung_funktion).

7. Zusatzaufgabe: In einer weiteren Funktion soll der Quotient aus 17 und 4 berechnet und in der Kon- 
sole angezeigt werden (07_division).

Während der Eingabe 
erhältst du in der Sta- 
tuszeile Warn- und 
Fehlerhinweise

Mit den Schaltflächen 
unten kannst du 
zwischen der Konsole 
und den manchmal 
etwas ausführlicheren 
Fehlermeldungen 
hin- und herschalten.

addiere(): multipliziere():



2.6.2 Objektorientierte Programmierung 
Arbeitsblatt 01 Einführung in Processing

www.fit-for-it-3.de Seite 4 verlag ludwig schulbuch

Klassen

In EOS stehen eine ganze Reihe fertiger Klassen zur Verfügung, z. B. Kreis oder Rechteck. 
Bei objektorientierter Programmierung kann man auch eigene Klassen erstellen, was in EOS nicht geht. 
Für die Schreibweise in Processing wird der zusammenhängende Programmcode dargestellt: 

Beispiel: 

Addierer Addierer1; 

void setup() { 
Addierer1=new Addierer(); 
Addierer1.gibAus(); 

} 

class Addierer { 
int Summe; 
Addierer() { 
Summe=17+4; 

} 
void gibAus () { 
println("17+4="+Summe);

}
}

8. Codiere die Klasse Addierer (08_siebzehnplusvier_klasse).

9. Ergänze eine Klasse Multiplizierer (09_rechnung_klasse).
Gib in dem Klassendiagramm rechts das Attribut und die Methode an.

Attribute und Punktnotation

10.Ändere das Programm 09_rechnung_klasse so ab, dass in der Klasse Multiplizierer die 
zuvor berechnete Summe mit einer Zahl malgenommen wird.
Du kannst auch die Vorlagendatei sketch_v01_rechnung_klasse verwenden. 
Speichere den Sketch unter 10_rechnung_Attribut.

o Beschreibe die Meldung in der Statuszeile.

_______________________________________________________________________________ 

_______________________________________________________________________________

Ø Wird eine Variable innerhalb einer Klasse deklariert, handelt es sich um ein Attribut.
Auf ein Attribut kann aber nur in Bezug auf ein Objekt zugegriffen werden.

11. Teste den Zugriff auf das Attribut mit Hilfe der Punktnotation Addierer1.Summe.
(11_rechnung_Punktnotation)

Ø Mit Hilfe der Punktnotation Objekt.Attribut bzw. Objekt.Methode
kann auf ein Attribut bzw. auf eine Methode in Bezug auf ein Objekt 
zugegriffen werden.

12. Zusatzaufgabe: Ergänze die Klasse Dividierer, in der das Produkt durch die
Summe dividiert wird (12_division; siehe Klassendiagramm rechts).

Eine Klasse wird mit dem Schlüsselwort class begonnen. 
Damit wird ein neuer Datentyp festgelegt, der wiederum Variablen und 
Funktionen beinhalten kann. 
Die Variablen innerhalb einer Klasse werden als Attribute bezeichnet.

Objekt der Klasse Addierer mit dem Bezeichner "Addierer1".

Ein Objekt der Klasse benötigt einen Objektbezeichner und 
wird mit der Anweisung new erzeugt. 
Dabei wird der Konstruktor aufgerufen.

Danach kann eine Methode des Objekts aufgerufen werden.

In dem Konstruktor werden die Attribute mit Default-Werten belegt.

Funktionen einer Klasse werden als Methode bezeichnet.

Dividierer 

Quotient:int 

gibAus ()

Multiplizierer

Klassendiagramm:


	Textfeld1: 
	Textfeld2: 
	Textfeld3: 
	Textfeld4: 
	Textfeld5: 
	Textfeld6: 
	Textfeld7: 
	Textfeld8: 
	Textfeld9: 
	Textfeld10: 
	Textfeld11: 
	Textfeld12: 
	Textfeld13: 
	Textfeld14: 
	Textfeld15: 
	Textfeld16: 
	Textfeld17: 
	Textfeld18: 
	Textfeld19: 
	Textfeld20: 
	Textfeld21: 
	Textfeld22: 


