

2.6.2 Objektorientierte Programmierung

Arbeitsblatt 04 Algorithmische Grundstrukturen I

www.fit-for-it-3.de Seite 1 verlag ludwig schulbuch

Animationen mit Processing

1. Der Radius eines blauen Kreises soll langsam anwachsen,
damit es so aussieht als ob man einen Ballon aufpusten
würde (vgl. Abb. rechts).

Für die Animation muss der Durchmesser des vorhandenen Objekts
schrittweise verändert werden.

➢ Wenn in Processing die Funktion draw () vorhanden ist,

wird sie in bestimmten Zeitabständen (Intervall) immer
wieder ausgeführt.
Das Intervall kann mit der Anweisung frameRate(n)

verändert werden. Dann wird draw() n mal pro Sekunde

ausgeführt (default ist 60 Frames pro Sekunde).
Anmerkung: translate() und rotate() - Anweisungen werden zu Beginn jedes Durchlaufs von

draw() zurückgesetzt.

o Verwende als Vorlage das Programm kreis1 (Vorlagedatei v07_kreis1).

Das Attribut linie wird nicht mehr benötigt, da die Kreislinie nicht gezeichnet

werden soll. Nimm die erforderlichen Änderungen vor uns ergänze die Funktion
draw() wie unten beschrieben.

...

void draw(){

 k1.zeichne();

}

class Kreis {

...

 void zeichne() {

 fill(0,0,255);

 noStroke();

 ellipse(x,y,d,d);

 d++;

 }

}

o Speichere das HTML-Dokument als kreisani1.

Einseitige Auswahl

2. Der Durchmesser des Kreises soll nur vergrößert werden,
wenn er kleiner als 290 ist. Dadurch wird der „Ballon“ nicht
endlos „aufgepustet“.

➢ Wenn der Programmablauf auf Grund einer Bedingung verzweigt,
liegt eine Auswahlstruktur vor. Die Schreibweise in Processing
für eine solche wenn-dann-Beziehung lautet:
if (d<290) {

 d++;

}

o Wenn die Zeichnungen und Animationen
komplexer werden,ist es übersichtlicher,
die Veränderungen an den Attributwerten
in einer zusätzlichen Methode vorzunehmen.

o Ergänze das Programm kreisani1 gemäß des Klassendiagramms oben: Die Auswahlstruktur

soll in die neue Methode animiere() eingetragen werden. Speichere als kreisani2.

Der Wert der Variablen d wird bei jeder Ausführung

der Methode zeichne () um 1 erhöht.

Aktivitätsdiagramm für die
einseitige Auswahl

Durchmesser kleiner als 290?

nein

erhöhe d um Eins

ja

Die Methode zeichne() wird

jetzt nicht mehr in der Funktion
setup() aufgerufen, sondern

in der Funktion draw().

Kreis

x:int
y:int
d:int

zeichne ()

k1:Kreis

x=150
y=150
d=20

Kreis

x:int
y:int
d:int

zeichne ()
animiere()

2.6.2 Objektorientierte Programmierung
Arbeitsblatt 04 Algorithmische Grundstrukturen I

www.fit-for-it-3.de Seite 2 verlag ludwig schulbuch

3. Modifiziere das Programm kreisani2 so, dass der Kreis nicht“aufgepustet”, sondern in Schritten
von einem Pixel um 200 Pixel nach rechts verschoben wird.
Die x-Koordinate des Mittelpunkts soll zu Beginn 50 betragen.
Speichere die Datei als kreisani3.

o Der Inhalt der Zeichenfläche wird zu Beginn eines Durchlaufs
der Funktion draw() nicht gelöscht. Dadurch entsteht eine
Linie mit abgerundeten Enden (siehe Abbildung rechts).

Ø Die Anweisung background() füllt den gesamten Zeichenbereich mit der angegeben Farbe.
Damit kann also die Zeichenfläche gelöscht werden.
Einen hellgrauen Hintergrund erhältst du mit der Anweisung background(200);

o Ergänze diese Anweisung zu Beginn der Funktion draw() (kreisani4).

4. Zwei Kreise (vgl. Objektdiagramme rechts) sollen in einer
Animation schrittweise vergrößert werden.
Ergänze kreisani2 und speichere das Programm unter
kreisani5 (Vorlagedatei: v08_kreisani2).

Hinweise:
o Das Zeichenfenster muss jetzt 600 Pixel breit sein.
o Bei objektorientierter Programmierung werden Klassen mit Attributen und Methoden erstellt, aus

denen beliebig viele Objekte konstruiert werden können.
Damit können einfach zwei Objekte einer Klasse erstellt werden.

5. Ein blauer und ein roter Kreis, die übereinander am linken Rand des Zeichenfensters „starten“, sollen
schrittweise um jeweils ein Pixel bis zum rechten Rand des Zeichenfensters verschoben werden.

o Erstelle Objektdiagramme und ein Aktivitätsdiagramm für die Methode animiere().

o Ergänze kreisani4 und speichere das Programm unter kreisani6.
(Vorlagedatei: v09_kreisani4)

6. Warum kann die Anweisung background(200); nicht in der Methode zeichne() ergänzt
werden, sondern in der Funktion draw()? Probiere es im Programm aus.

k1:Kreis

x=150
y=150
d=20
r=0
g=0
b=255

k2:Kreis

x=450
y=150
d=20
r=255
g=0
b=0

2.6.2 Objektorientierte Programmierung

Arbeitsblatt 04 Algorithmische Grundstrukturen I

www.fit-for-it-3.de Seite 3 verlag ludwig schulbuch

Zählschleifen

7. Eventuell hast du schon mit einem anderen Programmierwerkzeug wie z B. EOS Animationen erstellt.
Wird in EOS ein blau gefüllter Kreis schrittweise vergrößert, damit es so aussieht, als ob man einen
Ballon „aufpustet“, kann eine Wiederholungsstruktur verwendet werden.
Hier wird mit der Anweisung wiederhole 300 mal schrittweise der Radius

des Kreises erhöht (vgl. Arbeitsblatt 2.6.1 – 04, S. 2: 01-ballon1.eos):
...

ballon1:KREIS

...

wiederhole 300 mal

 ballon1.radiusSetzen(ballon1.radius+1)

*wiederhole

➢ Eine Zählschleife ist eine Kontrollstruktur, mit der eine Sequenz wiederholt ausgeführt und die
Anzahl der Wiederholungen angegeben wird.

o Das funktioniert in Processing nicht: Hier wird die Ausführung des Programms so optimiert, dass
das Ergebnis möglichst schnell berechnet und am Bildschirm angezeigt wird.
Verändert man eine Zeichnung schrittweise mit Hilfe einer Zählschleife, wird mit einer kurzen
Verzögerung das Ergebnis der Programmausführung angezeigt
(Programm siehe v10_kreis_for).

➢ Schreibweise der Zählschleife in Processing mit der Anweisung for:

...

for (i=d; i<200; i++) {

 ellipse(x,y,i,i);

 for (j=0; j<100; j++) {

 println(j);

 }

 }

➢ Eine Zählschleife wird auch als For-Schleife bezeichnet. Die Schreibweise lautet:

for (i=(Wert); (Bedingung, z. B. i<200); i++) {

 (Anweisungen)
}

Ballon1:KREIS

Mittex=0
Mittey=0
Radius=14
Füllfarbe=blau
Randfarbe=blau

Auch eine Verzögerung durch eine sinnlose
Wiederholungsstruktur nützt nichts:
Es dauert lediglich etwas länger, bis das Ergebnis der
Programmausführung angezeigt wird.

o Zunächst wird einer Zählvariablen ein Wert zugewiesen.

o Dann wird die Endebedingung festgelegt.

o Zum Schluss wird angegeben, wie mit der Zählvariablen
bei jedem Schleifendurchlauf zu verfahren ist.
i++ bedeutet, dass sie um Eins erhöht wird. Das ist

gleichwertig zur Schreibweise i=i+1

2.6.2 Objektorientierte Programmierung
Arbeitsblatt 04 Algorithmische Grundstrukturen I

www.fit-for-it-3.de Seite 4 verlag ludwig schulbuch

Logische Operationen

8. Der blaue Kreis aus dem Programm kreisani4 (Vorlagedatei: v09_kreisani4) soll immer vom
linken Rand des Zeichenfensters zum rechten Rand und zurück verschoben werden.

Hinweise:
o Das Zeichenfenster soll 600 Pixel breit und 300 Pixel hoch sein.
o Verwende die Einstellung frameRate(500); um die Bewegung zu beschleunigen.
o Indem ein ganzzahliges Attribut dx (für Delta x) eingeführt wird, kann die Bewegungsrichtung

umgekehrt werden: Ist dx gleich +1, wird der Ball schrittweise nach rechts verschoben, ist dx
gleich -1, wird er nach links verschoben.

o Durch welche Anweisung muss jetzt x++; ersetzt
werden? Ergänze das Aktivitätsdiagramm rechts.

o Die Bedingungen (x == 590) sowie (x == 10)
können mit dem logischen Operator oder verknüpft werden.
Ø Die Schreibweise für die oder-Verknüpfung ist ||.

o Nenne die Anweisung, mit der das Vorzeichen für dx
umgekehrt werden kann.

o Ergänze die erforderlichen Anweisungen und
speichere das Programm unter kreisani7.

9. Der „Ball“ soll genau zehnmal hin und her „fliegen“.

Hinweise:
o Eine Zählschleife ist für Animationen nicht geeignet.

Mit Hilfe eines weiteren Attributs kann das Programm
aber mitzählen, wie oft der Ball hin- und hergeflogen ist.

o Mit der Anweisung noLoop() kann die Animation
gestoppt werden. Wenn noLoop() in der Funktion
setup() aufgerufen wird, muss es die letzte Anweisung sein.
Mit loop() kann die Animation wieder gestartet werden.

o Erstelle ein Klassendiagramm und ein Objektdiagramm
für das Objekt k1. Ergänze das Aktivitätsdiagramm
rechts für die Methode animiere().

o Codiere das Modell und speichere das Programm als kreisani8.
(Vorlagedatei: v11_kreisani7)

x == 590 oder x == 10?
nein

kehre das Vorzeichen von dx um
ja

Aktivitätsdiagramm für die Methode animiere()

x == 590 oder x == 10?
nein

kehre das Vorzeichen von dx um
ja

ja
nein

2.6.2 Objektorientierte Programmierung

Arbeitsblatt 04 Algorithmische Grundstrukturen I

www.fit-for-it-3.de Seite 5 verlag ludwig schulbuch

10. In dem Objektdiagramm unten sind die Attributwerte für eine Seifenkiste
gegeben. Diese Seifenkiste soll in einem Processing-Programm gezeichnet
und animiert werden, indem sie viermal vom linken zum rechten Rand des
Zeichenfensters und zurück bewegt wird.

Hinweise:
o Zur Programmstruktur kannst du dich in den Programmversionen

zu dem Vorfahrtszeichen orientieren (vgl. Arbeitsblatt 03).
Skizziere die Seifenkiste wie du es von dem Vorfahrtszeichen her kennst.
Als Referenzpunkt (x|y) ist die linke obere Ecke der Kiste gut geeignet.

o Zu der Animation ist die Vorlagendatei v12_kreisani8 eine gute

Orientierungshilfe. Evtl. kannst du auch Programmcode direkt per copy-paste verwenden.
o Gliedere dein Vorhaben in Teilschritte auf:

o Erstelle zuerst die Klasse Seifenkiste, die nur aus zwei schwarzen Kreisen für die Räder besteht
und noch nicht animiert wird.

o Ergänze ein gelbes Rechteck für die Kiste.
Anmerkung: Die Farbe Gelb wird aus den
RGB-Werten (255,255,0) erzeugt.

o Dann kann die Seifenkiste animiert werden.

Für die Objekte in Abhängigkeit von x und y gilt:
o Kiste: xLinksOben = x und yLinksOben = y – 30

o Rad1: xMittelpunkt = x+14 und yMittelpunkt = y

o Rad2: xMittelpunkt = x+66 und yMittelpunkt = y

Probiere, die Aufgabe selbstständig zu bearbeiten. Wenn du dir das noch nicht zutraust – oder um
Details nachzusehen, findest du auf der folgenden Seite einen Lösungsvorschlag.

11. Zusatzaufgabe: Gestalte die Seifenkiste ansprechender, indem du weitere Objekte
ergänzt. Zum Beispiel könnte man einen LKW zeichnen.

Seifenkiste

x:int
y:int
dx:int
n:int
Kiste:Rechteck
Rad1:Kreis
Rad2:Kreis

animiere ()

x==0 x==800-Kiste.breite

dx=1 dx=-1

Es gilt die folgende Klassenstruktur:

1

1 2

Seifenkiste

Rechteck Kreis

Sk1:Seifenkiste

x=0
y=150
dx=1
n=0

Kiste:Rechteck

x=0

y=120

breite=80

hoehe=30

r=255

g=255

b=0

Rad1:Kreis

x=14

y=150

d=28

fill(0);

Rad2:Kreis

x=66

y=150

d=28

fill(0);

Mit den Klassen:

Rechteck

x:int
y:int
breite:int
hoehe:int
r:int
g:int
b:int

zeichne ()

Kreis

x:int
y:int
d:int

zeichne ()

2.6.2 Objektorientierte Programmierung

Arbeitsblatt 04 Algorithmische Grundstrukturen I

www.fit-for-it-3.de Seite 6 verlag ludwig schulbuch

Seifenkiste Sk1;

void setup() {

 size(800,300);

 frameRate(500);

 Sk1=new Seifenkiste(0,150,1); }

void draw(){

 background(255);

 Sk1.animiere(); }

class Seifenkiste {

 int x;

 int y;

 int dx;

 int n;

 Rechteck Kiste;

 Kreis Rad1;

 Kreis Rad2;

 Seifenkiste(int px,int py,int pdx) {

 x=px;

 y=py;

 dx=pdx;

 n=0;

 Kiste=new Rechteck(x,y-30,80,30,255,255,0);

 Rad1=new Kreis(x+14,y,28);

 Rad2=new Kreis(x+66,y,28);

 }

 void animiere() {

 Kiste.zeichne();

 Rad1.zeichne();

 Rad2.zeichne();

 Kiste.x=Kiste.x+dx;

 Rad1.x=Rad1.x+dx;

 Rad2.x=Rad2.x+dx;

 if (Kiste.x==800-Kiste.breite || Kiste.x==0) {

 dx=-dx;

 n++; }

 if (n==8) {

 noLoop();

 }

 }

}

class Rechteck {

 int x;

 int y;

 int breite;

 int hoehe;

 int r;

 int g;

 int b;

 Rechteck(int px,int py,int pbreite,

 int phoehe, int pr,int pg,int pb) {

 x=px;

 y=py;

 breite=pbreite;

 hoehe=phoehe;

 r=pr;

 g=pg;

 b=pb;

 }

 void zeichne() {

 fill(r,g,b);

 noStroke();

 rect(x,y,breite,hoehe);

 }

}

class Kreis {

 int x;

 int y;

 int d;

 Kreis(int px,int py,int pd) {

 x=px;

 y=py;

 d=pd;

 }

 void zeichne() {

 fill(0);

 noStroke();

 ellipse(x,y,d,d);

 }

}

Aktivitätsdiagramm für die
Methode animiere()

n == 8?

beende die Animation

Kiste am rechten Rand oder
Kiste am linken Rand?

nein

kehre das Vorzeichen von dx um

ja

erhöhe n um Eins

ja

nein

zeichne Kiste

zeichne Rad1

zeichne Rad2

setze Kiste.x=Kiste.x+dx

setze Rad1.x=Rad1.x+dx

setze Rad2.x=Rad2.x+dx

Eine
Zeile

Seifenkiste

x:int
y:int
dx:int
n:int
Kiste:Rechteck
Rad1:Kreis
Rad2:Kreis

animiere ()

Rechteck

x:int
y:int
breite:int
hoehe:int
r:int
g:int
b:int

zeichne ()

Kiste:Rechteck

x=0

y=120

breite=80

hoehe=30

r=255

g=255

b=0

Rad1:Kreis

x=14

y=150

d=28

Rad2:Kreis

x=66

y=150

d=28

2.6.2 Objektorientierte Programmierung

Arbeitsblatt 04 Algorithmische Grundstrukturen I

www.fit-for-it-3.de Seite 7 verlag ludwig schulbuch

Interrupt Request und Polling

Bei modernen Computern besteht die Möglichkeit, dass Peripheriegeräte eine Unterbrechungsanforderung
senden (engl. Interrupt Request). Dadurch wird das laufende Programm unterbrochen, um einen anderen
Vorgang abzuarbeiten. Danach wird das ursprüngliche Programm wieder fortgesetzt. Zum Beispiel sendet
die Tastatur einen Interrupt Request, wenn eine Taste gedrückt wurde.
Programmiersprachen stellen dafür einen Interrupt Handler zur Verfügung. In Processing wird die Funktion
keyPressed() aufgerufen, wenn eine Taste gedrückt wurde – sofern die Funktion vorhanden ist.

Wird die Taste wieder losgelassen, wird die Funktion keyReleased() aufgerufen.

Das Zeichen der betreffenden Taste wird in der Variablen keyCode gespeichert.

Wird beispielsweise die Taste <A> gedrückt, erhält die Variable keyCode den Wert 'a'.

Zur Steuerung eines Pong-Schlägers bieten sich die Pfeiltasten auf der Tastatur an. Diese entsprechen den
Werten LEFT und RIGHT.

Die beiden folgenden Funktionen stellen dem Objekt p1 der Klasse Pong in den Attributen links und

rechts vom Datentyp boolean die Information zur Verfügung, ob eine Pfeiltaste gedrückt wurde.

void keyPressed() {

 if (keyCode == LEFT) {

 p1.links = true;

 }

 if (keyCode == RIGHT) {

 p1.rechts = true;

 }

}

void keyReleased() {

 if (keyCode == LEFT) {

 p1.links = false;

 }

 if (keyCode==RIGHT) {

 p1.rechts = false;

 }

}

Hinweise:

o Damit der Programmcode etwas weniger Zeilen benötigt, kann die Deklaration von Attributen eines
Datentyps auch aufzählend erfolgen, z. B.: boolean gameover, links, rechts;

o Um das Spiel später mittels eines zweiten Schlägers und eines weiteren Balls ausbauen zu können,
werden der Klasse Schlaeger alle Attributwerte als Parameter übergeben, der Klasse Ball die

Füllfarbe.
o Das Spiel sollte mit der Framerate 200 gestartet werden, die bei jedem Treffer um 10 erhöht wird.

Dafür ist das Attribut v vorgesehen.

o Wenn die Reaktionsgeschwindigkeit auf ein Ereignis nicht so wichtig ist, kann man Wertänderungen
auch innerhalb des Programms durch zyklisches Abfragen von Werten ermitteln.
Diese Vorgehensweise nennt man Polling.
Eine denkbare Anwendung ist die Abfrage eines Mausklicks um ein neues Spiel zu beginnen, z. B.:

if (mousePressed) {

 // Beginne neues Spiel

}

2.6.2 Objektorientierte Programmierung

Arbeitsblatt 04 Algorithmische Grundstrukturen I

www.fit-for-it-3.de Seite 8 verlag ludwig schulbuch

12. Gegeben ist das Klassendiagramm für die Klasse Pong

und ein Vorschlag für die Objekte.
Entwickle den Programmcode zu dem Spiel Pong (pong1).

Hinweise:
o Beginne mit einer Programmversion, in der nur der

Schläger hin- und herbewegt werden kann.
o Entwickle dein eigenes Spiel. Die Diagramme rechts und

unten dienen als Anregung.
o Nach dem Starten des Programms könnte zuerst ein

Startbildschirm eingeblendet werden:

o Für Textausgaben im Zeichenfenster steht
die Anweisung text("Text",x,y); zur
Verfügung (vgl. Lerninhalte S. 6).

o Der Ball prallt an den Spielfeldrändern links, rechts
und oben ab. Hier muss also das Vorzeichen für die
Bewegungsrichtung in den Attributen dx bzw. dy

umgekehrt werden (Ball.pruefe()).

Am Spielfeldrand unten prallt der Ball nur ab, wenn er
den Schläger trifft (Pong.spiele()).

o Bei Attributen des Datentyps boolean benötigt man

keinen Vergleich mit ==, denn sie liefern einen
Wahrheitswert (true oder false).

Z. B. if (!gameover) (zu lesen als „if not gameover“)

ist gleichbedeutend mit if (gameover==false).

o Die Anzahl der Treffer wird in dem Attribut spielstand

mitgezählt und nach Spielende mit einem geeigneten
Kommentar angezeigt (z. B. „Game over!“).

p1:Pong

spielstart=true
gameover=false
spielstand=0
v=200

s1:Schlaeger

x=270

y=596

laenge=60

breite=4

r=255

g=255

b=0
links=false
rechts=false

b1:Ball

x=270

y=584

dx=0,4

dy=-1

r=255

g=255

b=0

Pong1:Zeichenfenster

Breite=600
Höhe=600
frameRate=200
background=0

nostroke ()

Struktur des Pong-Spiels
In einem Klassendiagramm

1

1

1

Pong

spielstart:boolean
gameover:boolean
spielstand:int
v:int
s1:Schlaeger
b1:Ball

spiele ()

Schlaeger

x:int
y:int
laenge:int
breite:int
r:int
g:int
b:int
links:boolean
rechts:boolean

zeichne ()
nachlinks ()
nachrechts()

Ball

x:float
y:float
dx:float
dy:float
r:int
g:int
b:int

bewege ()
pruefe ()
zeichne ()

	Textfeld1:
	Textfeld2:
	Textfeld3:
	Textfeld4:
	Textfeld5:
	Textfeld6:
	Textfeld7:

