

2.6.2 Objektorientierte Programmierung

Arbeitsblatt 07 Weitergehende Konzepte der Objektorientierten Programmierung

www.fit-for-it-3.de Seite 1 verlag ludwig schulbuch

Weitergehende Konzepte der Objektorientierten Programmierung

Vererbung

1. Ergänze in dem Programm „Vorfahrtsschild“ ein zusätzliches Attribut
x:int (Vorlagedatei: v18_vorfahrtsschild_komposition).

Dadurch kann in dem Konstruktor für das Objekt v1:Vorfahrtsschild
der Wert 150 übergeben werden. Außerdem muss die x-Koordinate des

Pfostens mit x-5 angegeben werden und für die beiden Quadrate mit x.
Speichere das Programm unter vorfahrtsschild_xschild.

2. Jetzt kann das Programm so ergänzt werden, dass mit Hilfe der Vererbungsbeziehung unten das
Verkehrszeichen „Ende der Vorfahrtsstraße“ rechts neben dem Vorfahrtszeichen gezeichnet wird.
Hinweis: Das Zeichenfenster sollte 600 Pixel breit sein.

Für das neue Verkehrszeichen
müssen zusätzlich drei Linien
gezeichnet werden.
Die Koordinaten in Abhängigkeit
des oberen Eckpunkts sind in der
Skizze schon angegeben.

o Ergänze in dem Programm
vorfahrtsschild_

xschild die Klasse

EndeVorfahrt mit
der Vererbungsbeziehung
wie unten beschrieben.

o Speichere das Programm unter dem Dateinamen „endevorfahrt_vererbung“.

class EndeVorfahrt extends Vorfahrtsschild {

 int x;

 int y;

 int dxy;

 EndeVorfahrt(int px,int py,int pdxy) {

 super(400);

 x=px;

 y=py;

 dxy=pdxy;

 }

 void zeichne() {

 strokeWeight(5);

 fill(0,0,0);

 line(...

 // Vervollständige die Zeichenbefehle für die drei Linien.
} }

Die Vererbungsbeziehung zu der allgemeineren Klasse wird mit der
Anweisung extends hergestellt.

Auf die „Elternklasse“ wird mit super() zugegriffen.
Damit wird der Konstruktor der allgemeineren Klasse
aufgerufen. Diese Anweisung muss deshalb die erste
im Konstruktor der spezielleren Klasse sein.
Denke auch daran, in der Funktion setup() ein
Objekt der Klasse EndeVorfahrt zu erstellen!

Vorfahrtsschild

x:int
p1:Pfosten
q1:Quadrat
q2:Quadrat

zeichneVorfahrt ()

(0,0)

(x,y)

(x-dxy/2-7,y+dxy*3/2-7)

(x-dxy/2,y+dxy*3/2)

(x+dxy/2-7,y+dxy/2-7)

(x+dxy/2,y+dxy/2)

(x-dxy/2+7,y+dxy*3/2+7)

(x+dxy/2+7,y+dxy/2+7)

Vorfahrtszeichen

1

2

1
 Rechteck

Quadrat

EndeDerVorfahrt

x:int
y int
dxy:int

zeichne()

2.6.2 Objektorientierte Programmierung

Arbeitsblatt 07 Weitergehende Konzepte der Objektorientierten Programmierung

www.fit-for-it-3.de Seite 2 verlag ludwig schulbuch

3. Ergänze das Programm kreis1

(Vorlagedatei v07_kreis1),
um ein Verkehrsschild „Verbot
für Fahrzeuge aller Art“ in Abhän-
gigkeit des Mittelpunkts (x|y)
des Kreises mit einem Pfosten
zu zeichnen (das linke Verkehrs-
zeichen in der Abbildung rechts).
Speichere das Programm als
verbotsschild.

Hinweis: Für diese und die nächste Aufgabe kannst du Programmcode aus dem Programm
endevorfahrt_vererbung verwenden.

4. Das Programm verbotsschild

(Vorlagedatei v19_verbotsschild)
kann mit einer Vererbungsbeziehung wie
in endevorfahrt so ergänzt werden,
dass rechts daneben das Verkehrszeichen
„Tempolimit“ gezeichnet wird.

Verbotsschild

Kreis

1

1
 Pfosten

1

Klassenstruktur zu dem
Verkehrszeichen „Verbot

für Fahrzeuge aller Art“

(x,y)

r

Verbotsschild

Kreis

1

1
 Rechteck

1

Tempolimit

1

Limit

1

Tempolimit

x:int
l:string
l1:Limit

Limit

schreibe()

1

1

2.6.2 Objektorientierte Programmierung

Arbeitsblatt 07 Weitergehende Konzepte der Objektorientierten Programmierung

www.fit-for-it-3.de Seite 3 verlag ludwig schulbuch

Gültigkeitsbereich von Variablen und Datenkapselung

Es ist viel Schreibarbeit, die Attribute für eine Klasse zu
deklarieren, für die bei der Konstruktion ohnehin Parameter
übergeben werden. Könnte man nicht die Parameter beim
Methodenaufruf übergeben?
In der Vorlagendatei v20_seifenkiste2 findest du eine

Variante des Programms seifenkiste1, bei der diese
Arbeit schon für dich erledigt wurde.

Hier gilt die Klassenstruktur rechts.

5. Öffne das Programm v20_seifenkiste2
und erstelle in eine zweite, blaue Seifenkiste, die
unterhalb der ersten Seifenkiste gegenläufig „fährt“,
also am rechten Rand startet und zuerst von rechts
nach links verschoben wird.
Speichere das Programm als seifenkiste3.

Hinweis: Die Attribute kr, kg und kb stehen für die Farbwerte R, G, B der Kiste. Das Attribut rd ist
für den Durchmesser der Räder vorgesehen.

 Hinweis zur Softwareentwicklung: Sollte sich ein Programm nicht wie vorgesehen verhalten oder
möchte man wichtige Stellen im Programmablauf genauer betrachten, kann man sich mit einer

print()- bzw. println()-Anweisung Attributwerte in der Konsole anzeigen lassen.

6. In der Version seifenkiste4v1 werden in der Methode zeigeX() die Werte für die Variable x der
Räder in der Konsole angezeigt, wenn die Bewegungsrichtung der Seifenkiste umgekehrt wird.

(Vorlagendatei v21_seifenkiste4v1)

o Die Programmausführung wird mit der Fehlermeldung
„x cannot be resolved to a variable” abgebrochen.

 Wird eine Variable innerhalb einer Methode deklariert, gilt diese Variable nur in dieser Methode.
Andere Klassen oder Methoden können nicht darauf zugreifen.
Dieses Prinzip nennt man Datenkapselung.
Eine solche Variable nennt man Lokale Variable.
Dadurch wird verhindert, dass der Wert einer Variablen versehentlich an einer anderen Stelle im
Programm verändert werden kann.

Anmerkung: Man kann Variablen auch ganz zu Beginn des Programms deklarieren.
Variablen, die außerhalb der Klassenstruktur deklariert werden, gelten in allen Klassen (Globale Variable).

 Man sollte aber die Verwendung globaler Variablen vermeiden, weil diese versehentlich mehrfach
genutzt werden können und dadurch falsche Ergebnisse entstehen könnten.

1

1 2

Rechteck

zeichne (x:int,y:int,kbreite:int,khoehe,kr:int,kg:int,kb:int)

Kreis

zeichne (x:int,y:int,rd:int)

Seifenkiste

x:int
y:int
dx:int
n:int
kbreite:int
khoehe:int
kr:int
kg:int
kb:int
rd:int
Kiste:Rechteck
Rad1:Kreis
Rad2:Kreis

animiere ()

2.6.2 Objektorientierte Programmierung
Arbeitsblatt 07 Weitergehende Konzepte der Objektorientierten Programmierung

www.fit-for-it-3.de Seite 4 verlag ludwig schulbuch

Rückgabewert

Ø Methoden haben keinen Zugriff auf die Attributwerte anderer Methoden.
Man kann mit der Anweisung return einen Wert an die aufrufende
Methode zurückgeben.

7. Ändere das Programm in der Vorlagendatei v21_seifenkiste4v1
wie in den Lerninhalten 02, S.2 beschrieben ab.

Beachte die zugehörigen
Klassendiagramme rechts.
Die Methode zeichne () erhält einen
Datentyp für den Rückgabewert.

8. Gib die Werte für die Mittelpunkte der Räder an, wenn die

Seifenkiste umkehrt: ______________________________

9. Der Radius der Kreise beträgt 14. Die Seifenkiste müsste also umkehren,
wenn die Mittelpunkte bei 786 bzw. 66 sind. Liegt ein Programmfehler vor?

10. Zusatzaufgabe: Die Seifenkisten sollen langsam beschleunigen und vor
dem Umkehren wieder abbremsen.

Hinweis: Die Methode animiere() wird komplizierter und damit
unübersichtlicher. Deshalb ist es sinnvoll, drei Methoden zu ergänzen:
o Für das Umkehren der Bewegungsrichtung die Methode wende().
o Die Methode beende().
o Das Anfahren und Abbremsen wird in der Methode bremse()

implementiert. Dafür werden auch die Attribute v und dv eingeführt.

o Ergänze das Aktivitätsdiagramm
für die Methode bremse() rechts.

o Speichere das Programm als
seifenkiste5.

Kreis

zeichne (x:int,y:int,rd:int):int
zeigeX (x:int)

x>=800-kbreite-120 oder x<=120?

setze die Framerate auf v

x == 400?
nein

kehre das Vorzeichen von dv um
ja

setze v=v+dv

ja
nein

Nachdem die Seifenkiste
beschleunigt hat, muss als
nächstes gebremst werden.
Dafür wird das Vorzeichen
von dv etwa zur Mitte des
Fensters umgekehrt
(dv wird hier negativ).
Zum Beschleunigen muss
das Vorzeichen von dv
positiv sein, also nochmals
umgekehrt werden. Das
kann in in der Methode
wende()erledigt werden.

Seifenkiste

v:int
dv:int
x:int
y:int
dx:int
n:int
kbreite:int
khoehe:int
kr:int
kg:int
kb:int
rd:int
xRad:int
Kiste:Rechteck
Rad1:Kreis
Rad2:Kreis

animiere ()
wende()
beende()
bremse()

Seifenkiste

x:int
y:int
dx:int
n:int
kbreite:int
khoehe:int
kr:int
kg:int
kb:int
rd:int
xRad:int
Kiste:Rechteck
Rad1:Kreis
Rad2:Kreis

animiere ()

2.6.2 Objektorientierte Programmierung

Arbeitsblatt 07 Weitergehende Konzepte der Objektorientierten Programmierung

www.fit-for-it-3.de Seite 5 verlag ludwig schulbuch

11. Das Programm Seifenkiste kann als Basis verwendet werden,
um durch Aufsetzen eines Dachs mit der Farbe Cyan als „Führerhaus“
ein Auto zu zeichnen. Das Auto soll oberhalb der Seifenkisten doppelt
so schnell fahren. Außerdem könnte sich das Auto von den beiden
Seifenkisten dadurch unterscheiden, dass die Karosserie 40 Pixel
länger und 10 Pixel niedriger sowie rot ist.
In der Vorlagedatei sketch_v22_seifenkiste6vorlage

ist der Aufruf anmimiere() für die jeweiligen Objekte innerhalb
der Funktion setup() eingetragen, weshalb die
Objekte nicht verschoben werden.
So kannst du in einem ersten Schritt sicherstellen,
dass die Objekte korrekt gezeichnet werden.

o Ergänze das Auto nach der in den Lerninhalten
beschriebenen Klassenstruktur rechts um eine
Vererbungsbeziehung, zunächst ohne das Dach.

Hinweise:
o Die Syntax für eine Vererbungsbeziehung ist auf Seite 1 beschrieben.

Du kannst auch z. B. das Programm endevorfahrt_vererbung zu Hilfe nehmen.
(vgl. .\262-materialien\vorfahrtszeichen\09_endevorfahrt_vererbung)

o Die Deklaration des Objekts d1 der Klasse Dach sollte global zu Beginn des Programms erfolgen.
(vgl. .\262-materialien\seifenkiste\10-seifenkiste6v2)

o Wenn du diese Anweisungen in die Methode draw() verschiebst, bewegen sich die Objekte.

Die Methode Seifenkiste.animiere()

soll in der Klasse Auto überschrieben
werden: Am einfachsten kopierst du die
Methode und ergänzt den Methodenaufruf
zum zeichnen des Dachs. Dieses kann
mit Hilfe der vorhandenen Parameter
gezeichnet werden (vgl. Skizze rechts).

o Speichere die Datei als seifenkiste6.

12. Die Seifenkisten bleiben mitten in der
Bewegung stehen. Sie sollen bis zum
Ende fahren (seifenkiste7).

13. Zusatzaufgabe: Das Auto soll wirklich
wenden (In Fahrtrichtung vorwärts
sitzt das Führerhaus weiter hinten).
Speichere die Datei als seifenkiste8.

14. Zusatzaufgabe: Ergänze Buttons Start

und Stop (seifenkiste9).

Seifenkiste

Kreis

1

2
 Rechteck

1

Auto

1

Dach

1

x+50

rd*3 rd

y-khoehe

A1:Auto

x=0
y=80
dx=2
n=0
kbreite=120
khoehe20
kr=255
kg=0
kb=0
rd=28

Auto

d1:Dach

animiere ()

Seifenkiste

x:int
y:int
dx:int
n:int
kbreite:int
khoehe:int
kr:int
kg:int
kb:int
rd:int
Kiste:Rechteck
Rad1:Kreis
Rad2:Kreis

animiere ()
wende()
beende()

Die Methode
animiere()
wird über-
schrieben.

2.6.2 Objektorientierte Programmierung

Arbeitsblatt 07 Weitergehende Konzepte der Objektorientierten Programmierung

www.fit-for-it-3.de Seite 6 verlag ludwig schulbuch

15. In dem Programm kreisani8 (vgl. Arbeitsblatt 1.8–04, S. 4) „fliegt“ein blauer Kreis zehnmal von
links nach rechts und wieder zurück (vgl. .\262-materialien\kreis\13-kreisani8).
o Der Kreis soll auch von oben nach unten fliegen und am Fensterrand

„abbprallen“. Verwende die Vorlagedatei v12_kreisani8 und

speichere das Programm als kreisani9.
o Ergänze das Objektdiagramm für das Zeichenfenster rechts unten.
o Gib im Aktivitätsdiagramm für die Methode animiere() ganz unten

die Bedingung an, wann der Kreis oben und unten „abprallen“ soll.
o Codiere die Ergänzungen in Processing.

Hinweise:
o Die Bewegung von unten nach oben findet in y-Richtung statt.

Dafür wird das Attribut dy (für Delta y) eingeführt.
o Die vertikale Bewegung soll langsamer sein als die horizontale,

weshalb für dy der Wert 0,5 zugewiesen wird. Deshalb wird für

y und dy der Datentyp float (Fließkommazahl) verwendet.
o Die Werte für y und dy sollen nicht in dem Konstruktor

der Klasse Kreis gesetzt werden, sondern in einer neuen

Methode setzePosition().

16. Ergänze einen roten und einen grünen Kreis.
Die Objekte sollen in einem Array gespeichert werden.

(siehe Arbeitsblatt 05, S. 2 bzw. gluecksrad2)
Die Startposition y ist eine Zufallszahl zwischen 10 und 290,

der Wert für dy soll zufällig im Intervall von -1 bis +1

festgelegt werden. Speichere das Programm als kreisani10.

17. Ein weiterer Kreis mit dem Durchmesser 40 und der
Farbe Magenta soll zu Beginn in der Mitte des
Zeichenfensters mit doppelter Geschwindigkeit

nach links starten (kreisani11).
(Vorlagedatei: v23_kreisani10)

Hinweise:
o Die Schreibweise für die Vererbungsbeziehung kannst du

z. B. aus dem Programm seifenkiste6 übernehmen.

o Zuerst solltest du aber die Methode animiere()
so verändern, dass die Kreise nicht mehr bei
590 bzw. 290 und 10 abprallen, sondern bei

600-d/2 bzw. 300-d/2 und d/2.

18. Der große Kreis soll von den anderen Kreisen abprallen,
indem bei einer Berührung die Werte für dx und dy

umgekehrt werden (kreisani12).
Reduziere die Framerate auf 100, um das besser
beobachten zu können.

Hinweis: Damit die überschriebene Methode animiere()
nicht zu komplex wird, ist es sinnvoll, eine weitere Methode
einzuführen, z. B. pruefeKollision().

Kreis

x:int
y:float
d:int
dx:int
n:int
dy:float

setzePosition()
zeichne ()
animiere()

kreisani9:Zeichenfenster

Breite=600
Höhe=300
FrameRate=500

n == 10?

beende die Animation

x == 590 oder x == 10?

nein

kehre das Vorzeichen von dx um

setze y=y+dy

ja

erhöhe n um Eins

ja

nein

setze x=x+dx

y >= 290 oder y <= 10?

nein

kehre das Vorzeichen von dy um

ja

	Textfeld1:
	Textfeld2:

