<S> 2.6.2 Objektorientierte Programmierung
z
Ff Arbeitsblatt 01 Einflihrung in Processing Losungen

Einfihrung in Processing

Flr die Programmierung in Processing steht eine integrierte Entwicklungsumgebung (IDE — engl. integrated
development environment) zur Verfligung. Eine IDE erméglicht das Erstellen von Computerprogrammen in
einer Programmieroberflache.
1. Gibin Processing die Anweisungen so ein, wie sie in der Abbildung unten dargestellt sind.
Lege die Verzeichnisstruktur « Processing * Programme 3 siebzehnundvier an.

o Speichere das Programm unter der Bezeichnung siebzehnplusvier.
(vgl. .\262-materialien\rechnung\sketch_01-siebzehnplusvier)
Processing legt fiir jedes Programm ein eigenes Verzeichnis an: sketch_01_siebzehnplusvier

In diesem Verzeichnis ist die Programmdatei sketch 01 siebzehnplusvier.pde.
(pde steht fur processing development environment).

Die Bezeichnung ®
sketch (engl. fur
»Skizze“) soll darauf

hindeuten, dass man

in Processing schnell o o Starten
Zeichnungen erzeugen
kann. sketch_01_siebzehnplusvier

Datei Bearbeiten Sketch Debugger Tools Hilfe

Das Programm wird println{"Das ist Processing:"

in dem Texteditor _J il print("1T+4="
eingegeben. el println{l7+4);

g println{"17+4="+1T+4);

o Starte das Programm, B orint("1Tea="+(1T44)) 3

indem du auf die

Schaltflache
klickst.
In der Konsole kon-)as ist Processing:

nen Textausgaben
angezeigt werden.
Fir Grafikausgaben
wird nach dem
Programmstart Konsole Ak Fehler
ein Zeichenfenster
geoffnet.

o Beende das Programm, indem du auf die Schaltflache ® klickst.

o Vergleiche die Ausgaben in der Konsole mit den Anweisungen des Programms. Beschreibe die
Wirkung der Anweisungen in den einzelnen Programmzeilen.

print: Ausgabe in der Konsole.

printin: Erzeugt am Ende einen Zeilenumbruch (In fiir ,,line”).

1: Gibt in der Konsole den Text in Anfiihrungszeichen aus (,,Das ist Processing“).
2: Der Text ,, 17+4="wird angezeigt.

3: Ohne Anfiihrungszeichen wird das Ergebnis der Rechnung 17+4 ausgegeben.
4: Texte werden mit dem Zeichen + aneinandergehdngt (,verkettet”).

5: Zahlen werden mit dem Zeichen + addiert.

www.fit-for-it-3.de Seite 1 verlag ludwig schulbuch

<S> 2.6.2 Objektorientierte Programmierung
z
Ff Arbeitsblatt 01 Einflihrung in Processing Losungen

Variablen

2. Wie lautet die Anweisung fiir die Zeile 6? Ergdnze und teste das Programm.
Speichere den Sektch als 02 siebzehnplusvier.
(vgl. .\262-materialien\rechnung\sketch 02 siebzehnplusvier_variable)

sketch_02_rechnung_variable

String Titel;
TNt Summe;
Titel="Processing mit Variahlen:";
Summe=17+4;

B println(Titel):

) print ("17+4="+Summe) ;

Lésungsbeispiel fiir Nr. 3:

sketch_03_rechnung _

Frt Produkt;

float Quotient;
Produkt=17+4;
Quotient=Produkt/5;

-

println{"17+4="+Produkt);

Processing mit Variable

EHd HKonsole Ak Fehler

print{Produkt+" /S="+Quotient) ;

3. Implementiere ein Programm, das zwei Zahlen multipliziert
und dann das Produkt durch eine andere Zahl dividiert.
Die Terme sollen in der Konsole angezeigt werden.
Achte darauf, dass der Quotient keine ganze Zahl ist.
Hinweis: Das Zeichen flir Multiplikation ist *, fiir Division /. .75

o Erganze den Algorithmus in dem Aktivitatsdiagramm. t
o Codllere den Algorithmus in Processing und [ganzzahlige Variable Produkt]
speichere den Sketch als 03 rechnung. ;
(vgl. .\262-materialien\rechnung\sketch_03_rechnung) v N
. .) [FlieBkommavariable Quotient
o Sieh dir das Ergebnis genau an. Was stellst du fest? -~ 7)
Die Nachkommastelle wird abgeschnitten. setze Produkt = 17*4)
o Kannst du dir einen Grund dafiir vorstellen? ¥ g
Das Produkt ist vom Datentyp integer, [setze Quotient = Produkt /5
also eine ganze Zahl. v
. . [Ausgabe Produkt]
Processing stellt auch das Ergebnis der Rechnung, 7

in der diese Variable vorkommt, als ganze Zahl dar. Ausgabe Quotient

®

Das Problem kann man mit einer Funktion behoben werden. Das ist eine Art von Unterprogramm, das man
in dem eigentlichen Programm aufrufen kann. Eine Programmiersprache verfiigt (iber viele Funktionen.

Ein Beispiel ist die Funktion f1oat (), die ganzzahlige Werte in Kommazahlen umwandelt.

Statt Quotient=Produkt/5; kann man kann z. B. schreiben Quotient=float (Produkt) /5;.

Dadurch wird der Wert der Variablen Produkt vor der Division in eine Kommazahl umgewandelt.

4. Erganze dein Programm (04 rechnung funktion).
(vgl. .\262-materialien\rechnung\sketch_04_rechnung_funktion)

www.fit-for-it-3.de Seite 2 verlag ludwig schulbuch

<S> 2.6.2 Objektorientierte Programmierung
z
Ff Arbeitsblatt 01 Einflihrung in Processing Losungen

Funktionen

5. Gib in Processing das Programm so ein, wie es in den Lerninhalten S. 3 beschrieben ist.
Speichere das Programm unter der Bezeichnung 05 siebzehnplusvier funktion.
(vgl. .\262-materialien\rechnung\sketch 05 siebzehnplusvier funktion)

Hinweise:

sketch_05_siebzehnplusvier_funktion

void setup() {
addiere ();

}

§W;'a'hrend der Eingabe

Y oid addiere () { i erhaltst du in der Sta-

Kt .
int Summe| ~ituszeile Warn- und
i # iFehlerhinweise

Missing a semicolon ;"

Problem Tab
Mizssing a semicolon " sketch_05_siebzehnplusvier_funktion &

Zeile i unten kannst du
und den manchmal

i Fehlermeldungen

Mit den Schaltflachen

zwischen der Konsole

i etwas ausfihrlicheren

Konsole A Fehler hin- und herschalten.

6. In einer weiteren Funktion sollen zwei Zahlen multipliziert werden.

o Ergdnze die Aktivitatsdiagramme fiir die Funktionen addiere() und multipliziere().

addiere(): multipliziere():
ganzzahlige Variable Summe] [ganzzahlige Variable Produkt]
v v
[setze Summe =17+4] [setze Produkt =17%4
v v
Ausgabe Summe Ausgabe Produkt

® ®

o Codiere den Algorithmus (06 _rechnung_ funktion).
(vgl. .\262-materialien\rechnung\sketch_06_rechnung_funktion)

7. Zusatzaufgabe: In einer weiteren Funktion soll der Quotient aus 17 und 4 berechnet und in der Kon-

sole angezeigt werden (07 division).
(vgl. .\262-materialien\rechnung\sketch 07 _division)

www.fit-for-it-3.de Seite 3 verlag ludwig schulbuch

T 2.6.2 Objektorientierte Programmierung
l)f Arbeitsblatt 01 Einflihrung in Processing Losungen

Klassen

In EOS stehen eine ganze Reihe fertiger Klassen zur Verfligung, z. B. Kreis oder Rechteck.
Bei objektorientierter Programmierung kann man auch eigene Klassen erstellen, was in EOS nicht geht.
Fir die Schreibweise in Processing wird der zusammenhangende Programmcode dargestellt:

Beispiel:

Addierer Addiererl; <«

Ein Objekt der Klasse bendtigt einen Objektbezeichner und
Addiererl=new Addierer (); 4~ wird mitder Anweisung new erzeugt.

void setup () {

Addiererl.gibAus () ; i Dabei wird der Konstruktor aufgerufe

}

Eme Klasse wird mi dem Schlisselwort class begonnen.
‘‘‘‘‘‘‘‘‘‘‘‘‘ Damlt wird ein neuer Datentyp festgelegt, der wiederum Variablen und
Funktlonen belnhalten kann

class Addierer {4«

int Summe; ...}

Addierer () {
Summe=17+4;

}

void gibAus () {
println ("17+4="+Summe) ; Funktlonen einer Klasse werden als Methode bezeichnet. :

L e

Klassendiagramm:

8. Codiere die Klasse Addierer (08 siebzehnplusvier klasse). ——
(vgl. .\262-materialien\rechnung\sketch_08_siebzehnplusvier klasse) Multiplizierer
9. ErgdnzeeineKlasseMultiplizierer (09 rechnung klasse). Produkt:int
Gib in dem Klassendiagramm rechts das Attribut und die Methode an.
(vgl. .\262-materialien\rechnung\sketch_09 _rechnung_klasse) gibAus ()

Attribute und Punktnotation

10.Andere das Programm 09 rechnung klasse soab, dass in der Klasse Multiplizierer die
zuvor berechnete Summe mit einer Zahl malgenommen wird.
Du kannst auch die Vorlagendatei sketch v01 rechnung klasse verwenden.
Speichere den Sketch unter 10 rechnung Attribut.
(vgl. .\262-materialien\rechnung\sketch_10_rechnung_Attribut)

o Beschreibe die Meldung in der Statuszeile.
Eine Fehlermeldung wird angezeigt: The variable ,,Summe” does not exist”

» Wird eine Variable innerhalb einer Klasse deklariert, handelt es sich um ein Attribut.
Auf ein Attribut kann aber nur in Bezug auf ein Objekt zugegriffen werden.

11.Teste den Zugriff auf das Attribut mit Hilfe der Punktnotation Addiererl. Summe.
(11 _rechnung Punktnotation)
(vgl. .\262-materialien\rechnung\sketch 11 rechnung_Punktnotation)

» Mit Hilfe der Punktnotation Objekt.Attribut bzw. Objekt.Methode

kann auf ein Attribut bzw. auf eine Methode in Bezug auf ein Objekt -
zugegriffen werden. Dividierer
12.Zusatzaufgabe: Erginze die Klasse Dividierer, in der das Produkt durch die Quotient:int
Summe dividiert wird (12 _division; siehe Klassendiagramm rechts). gibAus ()
(vgl. .\262-materialien\rechnung\sketch 12 _division)

www.fit-for-it-3.de Seite 4 verlag ludwig schulbuch

