

2.6.2 Objektorientierte Softwareentwicklung

Lerninhalte 02

www.fit-for-it-3.de Seite 1 verlag ludwig schulbuch

Weitergehende Konzepte der Objektorientierten Programmierung

Vererbung

In dem Klassendiagramm rechts ist die
Struktur eines Vorfahrtsschilds dargestellt
(vgl. Lerninhalte 01 S. 8).

Das Vorfahrtszeichen kann so
ergänzt werden, dass mit Hilfe
dreier Linien das Verkehrsschild
„Ende der Vorfahrtsstraße“
gezeichnet wird.

Bisher wurden Ergänzungen
in einer vorhandenen
Klassenstruktur durch
Aggregation oder Komposition
implementiert.
Ein mögliches Klassendiagramm
dazu könnte so aussehen:

Damit ist aber das ursprüngliche Verkehrszeichen alleine nicht mehr verfügbar.
Man kann auch vorhandene Klassen nutzen und ergänzen. So bleibt das Vorfahrtszeichen erhalten und
kann zusätzlich für das Verkehrszeichen „Ende der Vorfahrtsstraße“ genutzt werden:

 Neue Klassen können aus vorhandenen Klassen abgeleitet werden.
Damit stammt eine speziellere Klasse von der allgemeineren Klasse ab (Vererbung).
Die spezielle Klasse erbt die Attribute
und Methoden von der „Elternklasse“.
In der UML ist der Pfeil das
Symbol für die Vererbung, wobei die
Pfeilspitze auf die allgemeinere Klasse
zeigt.

Erläuterung des Klassendiagramms dazu:

Auf die Klasse, die die Rolle des „Elternteils“ hat, zeigt als Pfeilspitze ein Dreieck.
Von der Klasse mit der Rolle „Kind“ – die speziellere Klasse, die von der allgemeineren Klasse Attribute
und Methoden erbt – geht der Pfeil aus.

 Bearbeite das Arbeitsblatt 07, S. 1-2: Vererbung

Vorfahrtszeichen

Quadrat

1

2
 Rechteck

1

EndeDerVorfahrt

1

EndeLinie

3

EndeDerVorfahrt

Quadrat

1

2
 Rechteck

1

EndeLinie

3

Vorfahrtsschild

Quadrat

1

2
 Rechteck

1

Zusammensetzung (Struktur)
des Vorfahrtszeichens in
einem Klassendiagramm

„b
es

te
h

t
a

u
s“

„s
in

d
 T

ei
l v

o
n

“

2.6.2 Objektorientierte Softwareentwicklung

Lerninhalte 02

www.fit-for-it-3.de Seite 2 verlag ludwig schulbuch

Gültigkeitsbereich von Variablen und Datenkapselung

 Bearbeite das Arbeitsblatt 07, S. 3

 Wird eine Variable innerhalb einer Methode deklariert, gilt diese Variable nur in dieser Methode.
Andere Klassen oder Methoden können nicht darauf zugreifen.
Dieses Prinzip nennt man Datenkapselung. Eine solche Variable nennt man Lokale Variable.
Dadurch wird verhindert, dass der Wert einer Variablen versehentlich an einer anderen Stelle im
Programm verändert werden kann.

Anmerkung: Man kann Variablen auch ganz zu Beginn des Programms deklarieren.
Variablen, die außerhalb der Klassenstruktur deklariert werden, gelten in allen Klassen (Globale Variable).

 Man sollte aber die Verwendung globaler Variablen vermeiden, weil diese versehentlich mehrfach
genutzt werden können und dadurch falsche Ergebnisse entstehen könnten.

Rückgabewert

Im Beispiel werden in der Methode zeichne() mit dem Wert der Variablen x die Mittelpunkte der

Kreise für die Räder der Seifenkiste festgelegt. Um auf diesen Wert auch in der Methode zeigeX()

zugreifen zu können, muss er mit return als Rückgabewert an die aufrufende Methode zurückgegeben

und dann als Parameter beim Aufruf der Methode zeigeX() übergeben werden.

Weil die Methode zeichne() jetzt einen Wert zurückgibt, muss bei der Deklaration der Datentyp des

Rückgabewerts (int) anstatt der Angabe void verwendet werden.

In der aufrufenden Methode Seifenkiste.animiere() wird der Rückgabewert auf ein Attribut zugewiesen:
 void animiere() {

 Kiste.zeichne(x,y-khoehe,kbreite,khoehe,kr,kg,kb);

 xRad=Rad1.zeichne(x+rd/2,y,rd);

 xRad=Rad2.zeichne(x+kbreite-rd/2,y,rd);

...

 Rad1.zeigeX(xRad);

 Bearbeite das Arbeitsblatt 07, S. 4

2.6.2 Objektorientierte Softwareentwicklung

Lerninhalte 02

www.fit-for-it-3.de Seite 3 verlag ludwig schulbuch

Polymorphie

Das Programm Seifenkiste kann durch
Herstellen einer Vererbungsbeziehung so
ergänzt werden, dass auf Basis der Seifenkiste
durch Aufsetzen eines Dachs als „Führerhaus“
ein „Auto“ gezeichnet wird.
Die Klasse Seifenkiste ist die allgemeinere

Klasse, die Klasse Auto die speziellere Klasse.
Die Methode animiere() der Seifenkiste
kann zwar nicht verwendet werden, weil dort kein
Dach gezeichnet wird.
Wenn aber in der Klasse Auto ebenfalls eine

Methode animiere() erstellt wird, kann dort
das Dach ergänzt werden. In diesem Fall wird

auch nur die Methode animiere() der Klasse

Auto ausgeführt.

 Werden in einer Vererbungsbeziehung
Eigenschaften der allgemeineren Klasse
durch Deklarierung derselben Eigenschaft
in der spezielleren Klasse verändert, nennt
man das Überschreiben.

Wenn man eine Methode überschreibt, wird die Methode der spezielleren Klasse ausgeführt, im Beispiel
die Klasse Auto und nicht die Methode der allgemeineren Klasse („Elternklasse“).

 In mit einer Vererbungsbeziehung definierten speziellen Klassen können Eigenschaften hinzugefügt
oder vorhandene verändert werden. Objekte, die auf derselben Klasse basieren, können also unter-
schiedliche Verhaltensweisen haben. Das wird als Polymorphie bezeichnet.

Beispiel:

class Seifenkiste {

...

 void animiere() {

 Kiste.zeichne(x,y-khoehe,

 kbreite,khoehe,kr,kg,kb);

 Rad1.zeichne(x+rd/2,y,rd);

 Rad2.zeichne(x+kbreite-rd/2,

 y,rd);

 wende();

 beende();

 }

...

}

class Auto extends Seifenkiste {

 Auto() {

 super(0,80,2,120,20,255,0,0,28);

 d1=new Dach();

 d1.zeichne(x+65,y,rd);

 }

 void animiere() {

 d1.zeichne(x+50,y-khoehe,rd);

 Kiste.zeichne(x,y-khoehe,

 kbreite,khoehe,kr,kg,kb);

 Rad1.zeichne(x+rd,y,rd);

 Rad2.zeichne(x+kbreite-rd,y,rd);

 wende();

 beende();

 }

}

 Bearbeite das Arbeitsblatt 07, S. 5-6

Seifenkiste

Kreis

1

2
 Rechteck

1

Auto

1

Dach

1

In der Klasse Auto wird eine Vererbungsbeziehung
zu der Klasse Seifenkiste hergestellt. Wenn in der spezielleren Klasse dieselbe Methode

vorhanden ist, wird dadurch die Methode der
allgemeineren Klasse überschrieben.
Es gilt die Methode der spezielleren Klasse.
Im Beispiel wird Seifenkiste.animiere()
durch Auto.animiere() überschrieben.

2.6.2 Objektorientierte Softwareentwicklung

Lerninhalte 02

www.fit-for-it-3.de Seite 4 verlag ludwig schulbuch

Algorithmische Grundstrukturen II

Auswahlstrukturen

 Bearbeite das Arbeitsblatt 08, S. 1: Zweiseitige Auswahl

 Bei der zweiseitigen Auswahl wird entweder
die eine oder die andere von zwei Sequenzen
des Programms ausgeführt.
Schreibweise für die zweiseitige Auswahl:
 if (m1.zeigeWurf () == 0) {

 text("Kopf",15,80);

 }

 else {

 text("Zahl",15,80);

 }

 Mehrseitige Auswahl:
Bei der mehrseitigen Auswahl wird genau eine aus mehreren Sequenzen des Programms ausgeführt.
Beispiel in Processing:
switch (Wert) {

 case 1:

 ... (Anweisungen);

 break;

 case 2:

 ... (Anweisungen);

 break;

 default:

 ... (Anweisungen);

}

 Bei der mehrseitigen Auswahl wird genau eine aus mehreren Sequenzen des Programms ausgeführt.
Das lässt sich in einem Struktogramm übersichtlicher darstellen als in einem Aktivitätsdiagramm.

Im Beispiel ein Struktogramm für die Auswertung eines Würfels:

 Bearbeite das Arbeitsblatt 08, Seite 2-3.

Bei der mehrseitigen Auswahl wird der Wert einer
Variablen geprüft. Mit der Anweisung case werden
die zu unterscheidenden Fälle angegeben.

Die Sequenzen für die jeweiligen Fälle werden nicht mit
geschweiften Klammern festgelegt.
Vielmehr muss das Ende der Sequenz mit der Anweisung
break gekennzeichnet werden.

Der „sonst-Fall“ wird mit der Anweisung default
angegeben.

Mehrseitige Auswahl

falls wurf ==

 6 sonst 1 2 3 4 5

eins zwei drei vier fuenf sechs

Zweiseitige Auswahl

wurf = 0?

ja nein

Ausgabe „Kopf“ Ausgabe „Zahl“

2.6.2 Objektorientierte Softwareentwicklung

Lerninhalte 02

www.fit-for-it-3.de Seite 5 verlag ludwig schulbuch

Wiederholungsstrukturen

Bei einer Wiederholungsstruktur wird ein Teil
des Programmcodes mehrfach abgearbeitet.
Zählschleifen

Im Arbeitsblatt 04, S. 3 wurde besprochen, dass
in Processing Zählschleifen nicht für Animationen
verwendet werden können (v10_kreis_for).
(vgl. .\262-materialien\kreis\08_kreis_for)
Ein Beispiel für die Verwendung der Zählschleife
Hast du im Arbeitsblatt 05, S. 2 im Zusammenhang
mit Arrays kennengelernt (gluecksrad2).
(vgl. .\262-materialien\zufall\02_gluecksrad2)
Bei einer Zählschleife ist die Anzahl der
Wiederholungen festgelegt.

 Mit einer Zählschleife („for-Schleife“) kann
man eine Folge von Anweisungen mit
einer bestimmten Anzahl von Wieder-
holungen ausführen.
In Processing lautet die Syntax für eine
Zählschleife:
for (var i=(Startwert); (Endebedingung); i++) {

 Anweisungen; ...

}

 Bearbeite das Arbeitsblatt 08, Seite 4-5.

Wiederholung mit Ausführungsprüfung

Wenn der Programmablauf auf Grund einer Bedingung wiederholt wird,
spricht man von einer bedingten Wiederholung.
Wenn der Fall eintreten kann, dass eine Schleife überhaupt nicht ausgeführt
werden darf, verwendet man eine Wiederholung mit Ausführungsprüfung.

 Prüft man die Bedingung zur Ausführung einer Sequenz zu Beginn der
Ausführung ab, liegt eine Wiederholung mit Anfangsbedingung vor.

 Bearbeite das Arbeitsblatt 08, Seite 6: Wiederholung mit Ausführungsprüfung

Rekursion

 Bearbeite das Arbeitsblatt 09

 Als Rekursion bezeichnet man eine Programmier-
technik, in der eine Funktion sich selbst aufruft.
Jeder Aufruf der rekursiven Funktion muss sich in
endlich viele Schritte auflösen lassen, sie darf
also nicht in eine Endlosschleife geraten.

Ein Beispiel ist die Methode berechneFakultaet ()
mit rekursiver Struktur im Aktivitätsdiagramm rechts.

wiederhole
solange wurf != 6

würfle

wiederhole 10 mal (von i = 1; solange i < 11)

würfle

erhöhe x um 39

zeichne den Würfel mit der
Augenzahl wurf an der

Position x und y

wiederhole 10 mal (von j = 1; solange j < 11)

setze x auf 15

erhöhe y um 45

nein
ja

n > 1?

gib n*berechneFakultaet(n-1)
zurück

gib den Wert 1 zurück

